
 

 

  



 

 

 

 

 

ExecuTrain es un proveedor de entrenamiento corporativo a nivel internacional y líder mundial en la capacitación 

empresarial. Contamos con 22 años y más de 62 mil personas capacitadas en zona occidente. 

¿Por qué ExecuTrain? 
  

Te guiamos en la definición de tus requerimientos de capacitación, en las diferentes etapas: 

• Detección de necesidades, evaluación de conocimientos, plan de capacitación y seguimiento posterior para elegir el 

plan de capacitación como tú lo necesitas. 

• El más amplio catálogo de cursos, desde un nivel básico hasta los niveles de conocimientos más especializados.  

• En ExecuTrain el material y la metodología están diseñados por expertos en aprendizaje humano. Lo que te garantiza 

un mejor conocimiento en menor tiempo. 

• Tú puedes confiar y estar seguro del aprendizaje porque nuestro staff de instructores es de primer nivel, algunos de 

los cuales son consultores en reconocidas empresas. 

• No pierdas tu tiempo, los cursos están diseñados para un aprendizaje práctico. 

• Nuestra garantía: Nuestro compromiso es que tú aprendas, si no quedas satisfecho con los resultados del programa, 

podrás volver a tomar los cursos hasta tu entera satisfacción o la devolución de tu dinero. 

 Modalidad de servicio 
 

• Cursos de Calendario 

• Cursos Privados: On site y en nuestras instalaciones. 

• Cursos Personalizados: Adaptamos el contenido del curso y su duración dependiendo de la necesidad del cliente. 

• E-Training: cursos a distancia de forma interactiva, mejorando la capacidad de aprendizaje de nuestros participantes 

guiados por un instructor en vivo. 

 

 

 

 

 

 

 

 

¿Por qué ExecuTrain? 



 

 

Curso oficial DevOps Tools Engineer - Exam 705 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 Prerequisites 
 
There are no prerequisites for this certification. However, an additional certification in the candidate’s primary area of 
expertise, such as LPIC-1 or a developer certification, is strongly recommended. 

 
 Temario  

 
Topic 701: Software Engineering  
701.1 Modern Software Development (weight: 6)  
Weight: 6  

 
Description: Candidates should be able to design software 
solutions suitable for modern runtime environments. 
Candidates should understand how services handle data 
persistence, sessions, status information, transactions, 
concurrency, security, performance, availability, scaling, 
load balancing, messaging, monitoring and APIs. 
Furthermore, candidates should understand the 
implications of agile and DevOps on software 
development.  

 
Key Knowledge Areas:  

• Understand and design service based applications  

• Understand common API concepts and standards  

• Understand aspects of data storage, service status 
and session handling  

• Design software to be run in containers  

• Design software to be deployed to cloud services  

• Awareness of risks in the migration and 
integration of monolithic legacy software  

• Understand common application security risks 
and ways to mitigate them  

• Understand the concept of agile software 
development  

• Understand the concept of DevOps and its 
implications to software developers and 
operators 

 
The following is a partial list of the used files, terms and 
utilities:  

• REST, JSON  

• Service Orientated Architectures (SOA)  

• Microservices  

• Immutable servers  

• Loose coupling  

• Cross site scripting, SQL injections, verbose error 
reports, API authentication, consistent 
enforcement of transport encryption  

• CORS headers and CSRF tokens  

Businesses across the globe are increasingly implementing DevOps practices to optimize daily systems administration and software 

development tasks. As a result, businesses across industries are hiring IT professionals that can effectively apply DevOps to reduce 

delivery time and improve quality in the development of new software products. 

To meet this growing need for qualified professionals, Linux Professional Institute (LPI) developed the Linux Professional Institute 

DevOps Tools Engineer certification which verifies the skills needed to use the tools that enhance collaboration in workflows 

throughout system administration and software development. 

In developing the Linux Professional Institute DevOps Tools Engineer certification, LPI reviewed the DevOps tools landscape and 

defined a set of essential skills when applying DevOps. As such, the certification exam focuses on the practical skills required to 

work successfully in a DevOps environment – focusing on the skills needed to use the most prominent DevOps tools. The result is 

a certification that covers the intersection between development and operations, making it relevant for all IT professionals working 

in the field of DevOps. 



 

 

• ACID properties and CAP theorem  
 
701.2 Standard Components and Platforms for Software 
(weight: 2)  
Weight: 2  

 
Description: Candidates should understand services 
offered by common cloud platforms. They should be able 
to include these services in their application architectures 
and deployment toolchains and understand the required 
service configurations. OpenStack service components are 
used as a reference implementation.  

 
Key Knowledge Areas:  

• Features and concepts of object storage  

• Features and concepts of relational and NoSQL 
databases  

• Features and concepts of message brokers and 
message queues  

• Features and concepts of big data services  

• Features and concepts of application runtimes / 
PaaS  

• Features and concepts of content delivery 
networks  

 
The following is a partial list of the used files, terms and 
utilities:  

• OpenStack Swift  

• OpenStack Trove  

• OpenStack Zaqar  

• CloudFoundry  

• OpenShift  
 
701.3 Source Code Management (weight: 5)  
Weight: 5  

 
Description: Candidates should be able to use Git to 
manage and share source code. This includes creating and 
contributing to a repository as well as the usage of tags, 
branches and remote repositories. Furthermore, the 
candidate should be able to merge files and resolve 
merging conflicts.  
 
Key Knowledge Areas:  

• Understand Git concepts and repository structure  

• Manage files within a Git repository  

• Manage branches and tags  

• Work with remote repositories and branches as 
well as submodules  

• Merge files and branches  

• Awareness of SVN and CVS, including concepts of 
centralized and distributed SCM solutions  

 
The following is a partial list of the used files, terms and 
utilities:  

• git  

• .gitignore  
 
701.4 Continuous Integration and Continuous Delivery 
(weight: 5)  
Weight: 5  

 
Description: Candidates should understand the principles 
and components of a continuous integration and 
continuous delivery pipeline. Candidates should be able to 
implement a CI/CD pipeline using Jenkins, including 
triggering the CI/CD pipeline, running unit, integration and 
acceptance tests, packaging software and handling the 
deployment of tested software artifacts. This objective 
covers the feature set of Jenkins version 2.0 or later.  

 

• Key Knowledge Areas:  

• Understand the concepts of Continuous 
Integration and Continuous Delivery  

• Understand the components of a CI/CD pipeline, 
including builds, unit, integration and acceptance 
tests, artifact management, delivery and 
deployment  

• Understand deployment best practices  

• Understand the architecture and features of 
Jenkins, including Jenkins Plugins, Jenkins API, 
notifications and distributed builds  

• Define and run jobs in Jenkins, including 
parameter handling  

• Fingerprinting, artifacts and artifact repositories  

• Understand how Jenkins models continuous 
delivery pipelines and implement a declarative 
continuous delivery pipeline in Jenkins  

• Awareness of possible authentication and 
authorization models  

• Understanding of the Pipeline Plugin  

• Understand the features of important Jenkins 
modules such as Copy Artifact Plugin, Fingerprint 
Plugin, Docker Pipeline, Docker Build and Publish 
plugin, Git Plugin, Credentials Plugin  

• Awareness of Artifactory and Nexus  
 



 

 

The following is a partial list of the used files, terms and 
utilities:  

• Step, Node, Stage  

• Jenkins SDL  

• Jenkinsfile  

• Declarative Pipeline  

• Blue-green and canary deployment 
  

Topic 702: Container Management  
702.1 Container Usage (weight: 7) 
Weight: 7  

 
Description: Candidates should be able to build, share and 
operate Docker containers. This includes creating 
Dockerfiles, using a Docker registry, creating and 
interacting with containers as well as connecting 
containers to networks and storage volumes. This 
objective covers the feature set of Docker version 17.06 or 
later.  
 
Key Knowledge Areas:  

• Understand the Docker architecture  

• Use existing Docker images from a Docker registry  

• Create Dockerfiles and build images from 
Dockerfiles  

• Upload images to a Docker registry  

• Operate and access Docker containers  

• Connect container to Docker networks  

• Use Docker volumes for shared and persistent 
container storage  

 
The following is a partial list of the used files, terms and 
utilities:  

• docker  

• Dockerfile  

• .dockerignore  
 
702.2 Container Deployment and Orchestration (weight: 
5)  
Weight: 5  
 
Description: Candidates should be able to run and manage 
multiple containers that work together to provide a 
service. This includes the orchestration of Docker 
containers using Docker Compose in conjunction with an 
existing Docker Swarm cluster as well as using an existing 
Kubernetes cluster. This objective covers the feature sets 
of Docker Compose version 1.14 or later, Docker Swarm 

included in Docker 17.06 or later and Kubernetes 1.6 or 
later.  
 
Key Knowledge Areas:  

• Understand the application model of Docker 
Compose  

• Create and run Docker Compose Files (version 3 or 
later)  

• Understand the architecture and functionality of 
Docker Swarm mode  

• Run containers in a Docker Swarm, including the 
definition of services, stacks and the usage of 
secrets  

• Understand the architecture and application 
model Kubernetes  

• Define and manage a container-based application 
for Kubernetes, including the definition of 
Deployments, Services, ReplicaSets and Pods  

 
The following is a partial list of the used files, terms and 
utilities:  

• docker-compose  

• docker  

• kubectl  
 
702.3 Container Infrastructure (weight: 4)  
Weight: 4  

 
Description: Candidates should be able to set up a runtime 
environment for containers. This includes running 
containers on a local workstation as well as setting up a 
dedicated container host. Furthermore, candidates should 
be aware of other container infrastructures, storage, 
networking and container specific security aspects. This 
objective covers the feature set of Docker version 17.06 or 
later and Docker Machine 0.12 or later.  
 
Key Knowledge Areas:  

• Use Docker Machine to setup a Docker host  

• Understand Docker networking concepts, 
including overlay networks  

• Create and manage Docker networks  

• Understand Docker storage concepts  

• Create and manage Docker volumes  

• Awareness of Flocker and flannel  

• Understand the concepts of service discovery  

• Basic feature knowledge of CoreOS Container 
Linux, rkt and etcd  



 

 

• Understand security risks of container 
virtualization and container images and how to 
mitigate them  

 
The following is a partial list of the used files, terms and 
utilities:  

• docker-machine  
 

Topic 703: Machine Deployment  
703.1 Virtual Machine Deployment (weight: 4) 
Weight: 4  
 
Description: Candidates should be able to automate the 
deployment of a virtual machine with an operating system 
and a specific set of configuration files and software.  
 
Key Knowledge Areas:  

• Understand Vagrant architecture and concepts, 
including storage and networking  

• Retrieve and use boxes from Atlas  

• Create and run Vagrantfiles  

• Access Vagrant virtual machines  

• Share and synchronize folder between a Vagrant 
virtual machine and the host system  

• Understand Vagrant provisioning, including File, 
Shell, Ansible and Docker  

• Understand multi-machine setup  
 
The following is a partial list of the used files, terms and 
utilities:  

• vagrant  

• Vagrantfile  
 
703.2 Cloud Deployment (weight: 2) 
Weight: 2  
 
Description: Candidates should be able to configure IaaS 
cloud instances and adjust them to match their available 
hardware resources, specifically, disk space and volumes. 
Additinally, candidates should be able to configure 
instances to allow secure SSH logins and prepare the 
instances to be ready for a configuration management tool 
such as Ansible.  
 
Key Knowledge Areas:  

• Understanding the features and concepts of 
cloud-init, including user-data and initializing and 
configuring cloud-init  

• Use cloud-init to create, resize and mount file 
systems, configure user accounts, including login 
credentials such as SSH keys and install software 
packages from the distribution’s repository  

• Understand the features and implications of IaaS 
clouds and virtualization for a computing instance, 
such as snapshotting, pausing, cloning and 
resource limits 

 
703.3 System Image Creation (weight: 2)  
Weight: 2  
 
Description: Candidates should be able to create images 
for containers, virtual machines and IaaS cloud instances.  
 
Key Knowledge Areas:  

• Understand the functionality and features of 
Packer  

• Create and maintain template files  

• Build images from template files using different 
builders  

 
The following is a partial list of the used files, terms and 
utilities:  

• packer  
 

Topic 704: Configuration Management  
704.1 Ansible (weight: 8)  
Weight: 8  
 
Description: Candidates should be able to use Ansible to 
ensure a target server is in a specific state regarding its 
configuration and installed software. This objective covers 
the feature set of Ansible version 2.2 or later.  
 
Key Knowledge Areas:  

• Understand the principles of automated system 
configuration and software installation  

• Create and maintain inventory files  

• Understand how Ansible interacts with remote 
systems  

• Manage SSH login credentials for Ansible, 
including using unprivileged login accounts  

• Create, maintain and run Ansible playbooks, 
including tasks, handlers, conditionals, loops and 
registers  

• Set and use variables  

• Maintain secrets using Ansible vaults  



 

 

• Write Jinja2 templates, including using common 
filters, loops and conditionals  

• Understand and use Ansible roles and install 
Ansible roles from Ansible Galaxy  

• Understand and use important Ansible tasks, 
including file, copy, template, ini_file, lineinfile, 
patch, replace, user, group, command, shell, 
service, systemd, cron, apt, debconf, yum, git, and 
debug  

• Awareness of dynamic inventory  

• Awareness of Ansibles features for non-Linux 
systems  

• Awareness of Ansible containers  
 
The following is a partial list of the used files, terms and 
utilities:  

• ansible.cfg  

• ansible-playbook  

• ansible-vault  

• ansible-galaxy  

• ansible-doc  
 
704.2 Other Configuration Management Tools (weight: 2) 
Weight: 2  
 
Description: Candidates should understand the main 
features and principles of important configuration 
management tools other than Ansible.  
 
Key Knowledge Areas:  

• Basic feature and architecture knowledge 
of Puppet.  

• Basic feature and architecture knowledge of Chef.  
 
The following is a partial list of the used files, terms and 
utilities:  

• Manifest, Class, Recipe, Cookbook  

• puppet  

• chef  

• chef-solo  

• chef-client  

• chef-server-ctl  

• knife 
  

Topic 705: Service Operations  
705.1 IT Operations and Monitoring (weight: 4) 
Weight: 4  
 

Description: Candidates should understand how IT 
infrastructure is involved in delivering a service. This 
includes knowledge about the major goals of IT 
operations, understanding functional and nonfunctional 
properties of an IT services and ways to monitor and 
measure them using Prometheus. Furthermore 
candidates should understand major security risks in IT 
infrastructure. This objective covers the feature set of 
Prometheus 1.7 or later.  
 
Key Knowledge Areas:  

• Understand goals of IT operations and service 
provisioning, including nonfunctional properties 
such as availability, latency, responsiveness  

• Understand and identify metrics and indicators to 
monitor and measure the technical functionality 
of a service  

• Understand and identify metrics and indicators to 
monitor and measure the logical functionality of a 
service  

• Understand the architecture of Prometheus, 
including Exporters, Pushgateway, Alertmanager 
and Grafana  

• Monitor containers and microservices using 
Prometheus  

• Understand the principles of IT attacks against IT 
infrastructure  

• Understand the principles of the most important 
ways to protect IT infrastructure  

• Understand core IT infrastructure components 
and their the role in deployment  

 
The following is a partial list of the used files, terms and 
utilities:  

• Prometheus, Node exporter, Pushgateway, 
Alertmanager, Grafana  

• Service exploits, brute force attacks, and denial of 
service attacks  

• Security updates, packet filtering and application 
gateways  

• Virtualization hosts, DNS and load balancers  
 

705.2 Log Management and Analysis (weight: 4)  
Weight: 4  
 
Description: Candidates should understand the role of log 
files in operations and troubleshooting. They should be 
able to set up centralized logging infrastructure based on 
Logstash to collect and normalize log data. Furthermore, 



 

 

candidates should understand how Elasticsearch and 
Kibana help to store and access log data.  

 
Key Knowledge Areas:  

• Understand how application and system logging 
works  

• Understand the architecture and functionality of 
Logstash, including the lifecycle of a log message 
and Logstash plugins  

• Understand the architecture and functionality of 
Elasticsearch and Kibana in the context of log data 
management (Elastic Stack)  

• Configure Logstash to collect, normalize, 
transform and store log data  

• Configure syslog and Filebeat to send log data to 
Logstash  

• Configure Logstash to send email alerts  

• Understand application support for log 
management  

 
The following is a partial list of the used files, terms and 
utilities:  

• logstash  

• input, filter, output  

• grok filter  

• Log files, metrics  

• syslog.conf  

• /etc/logstash/logstash.yml  

• /etc/filebeat/filebeat.yml 


